Alliance Indiana of Rural Water presentations now posted

AIRW.Fall.2015.logo-150x150On August 26, Dr. Whelton delivered the Fall 2015 conference keynote address and lunch time presentation for the Alliance Indiana of Rural Water meeting in Fort Wayne, Indiana. The Alliance represents more than 800 drinking water and wastewater utilities in Indiana and provides an excellent service to its members and partners.

Dr. Whelton’s key note conference presentation focused on Community Resilience specifically as it pertains to the 2014 Chemical Spill in West Virginia and many subsequent chemical spills that have occurred across the U.S. (Key Note Presentation). The lunch time presentation included a discussion of the complexity of plastic drinking water plumbing systems, test standard deficiencies, and results from his team’s bench- and field-scale research activities (Lunch Presentation). More information about the chemical spill can be found here. New results from the team’s plastic plumbing system research can also be found by typing the word “PEX” into the website search bar.

Posted in Research | Tagged , , , , , , , , , , , , , , | Comments Off

Your Tax Dollars at Work: Chemical spill research and direct community support in action [updated August 18, 2015]

CIMG0518On January 9 2014, 300,000 people in the Charleston, West Virginia area were directed not to use there licorice smelling tap water… touching off one of the largest acute drinking water disasters in US history.

Freedom Industries, Inc. and it’s staff stored tens of thousands of gallons of a coal washing liquid within feet from the Elk River.  Their storage tanks were 1.5 miles upstream of a regional drinking water treatment facility’s intake. Because Freedom Industries and its staff failed to maintain their above ground storage tanks (catastrophic corrosion occurred), more than 10,000 gallons of a liquid mixture of compounds called Crude MCHM and Stripped PPH entered the water supply on or near January 9.

The water company, West Virginia American Water, chose to draw this tainted water into it’s water treatment facility, increased their chemical dosages in an attempt to remove the chemicals so they could avoid shutting down their water system. This could have resulted in water distribution system depressurization.

Late afternoon on January 9, the water company discovered their treatment approach was ineffective and the Do Not Use drinking water order was issued by the Governor with support of the water company. Several hours later President Obama declared the incident a federal disaster.

It was Unprecedented 

The scale of the acute drinking water contamination incident was unprecedented.

Nine counties were affected, 15% of the West Virginia’s population. Businesses and schools were shutdown, hospitals and other critical care facilities were faced without distributed drinking water.

Contaminated water resided in more than 2,200 miles of water pipes, more than 100 drinking water storage tanks, and upwards of 90,000 building plumbing systems. Residents sought medical attention at hospitals and from their physicians after experiencing chemical burns and inhalation issues.

The main ingredient in the spilled liquid was 4-MCHM, 4-methylcyclohexane methanol, but a number of other ingredients were known to be present as well.

The MSDS’s which responders relied upon for decisions, found to be inaccurate later on, were missing key health impact data and many of the chemicals spilled were not listed on any MSDS. [12 days after the spill Freedom Industries would disclose additional chemicals being spilled into the Elk River that they failed to notify anyone about.]

The Crude MCHM Safety Data Sheet listed health hazards and some of the chemicals spilled into the Elk River, but not all. Stripped PPH, a second liquid product with a separate data sheet, was also mixed into the spilled liquid. Freedom Industries did not disclose it was present until 12 days after the spill.

The Crude MCHM Safety Data Sheet listed health hazards and some of the chemicals spilled into the Elk River, but not all. Stripped PPH, a second liquid product with a separate data sheet, was also mixed into the spilled liquid. Freedom Industries did not disclose it was present until 12 days after the spill.

Arrival in West Virginia and the National Science Foundation

After my volunteer student and faculty team drove from Alabama into the area in January 2014 to help the community respond we quickly realized the scale of the disaster. It was fate that we were able to team up the West Virginia Clean Water Hub (Rob Goodwin) and People Concerned About Chemical Safety (Maya Nye) to help residents decontaminate their homes, testing their water, and ultimately redesigning the flushing method issued by the responders.

By chance we crossed paths with Krysta Bryson, a PhD student at Ohio State University, and also a West Virginian who’s family lived in the affected area. She, on her own dime, began documenting the incident as well as the experiences of residents with video, cell phone audio recorder, and camera. We teamed up with her and she since established a West Virginia Water Crisis blog that still is updated today. Check it out here.

CIMG0516

Volunteer university team on January 17, 2014 near the Kanawha River, Charleston, West Virginia: (Left to Right) Jeff Gill (grad student), Keven Kelley (grad student), Prof. Andrew Whelton, Prof. Kevin White, Matt Connell (grad student), LaKia McMillan (grad student)

Upon returning to our home we were inundated with emails and telephone calls from residents affected by the spill. Together, we created a blog post with answers to common questions and simultaneously published it on Krista Bryson’s blog. The Q&A does not include every question we received, but the most common. We continue to receive questions.. in March 2015 we received questions from residents affected by the spill.

In January, the US National Science Foundation too recognized the unprecedented scientific need, saw the impact firsthand, and stepped in. They providing emergency funding to my team on the ground, Krista Bryson and her advisor at Ohio State University. NSF also authorized rapid research projects at West Virginia University, Ohio State University, University of Memphis, and Virginia Tech. Below is a video that describes some of the research that we have conducted.

The NSF rapid funding has enabled my team and collaborators to assist West Virginians, the utilities, and State and Federal agencies number of ways. We have made a variety of discoveries (some described below) and have several more in the pipeline. Without NSF funding I am pretty sure that no other agency would have stepped in to fund the necessary science for this disaster.

NSF is funded by Federal tax dollars (appropriated by the legislative branch). Without this funding I can assure you many questions West Virginians asked would never have been answered based on a review of past chemical spill responses. Our discoveries have the potential to help Americans across the US be better protected and prepared for a similar (or more severe) event. Our results also have direct relevance to communities affected by chemical spills outside the US. Science has no borders.

CIMG0501

Graduate students Keven Kelley and LaKia McMillan collect and analyze contaminated tap water in one of the homes we visited during our rapid response. Results of this testing were described in a FREE report published by the Journal Environmental Science and Technology journal overseen by the American Chemical Society.

The following people and organizations have contributed in some way to our NSF funded research. This includes assistance conducting our investigation, feedback about our results, scientific input about testing or results, and clarification about events or data.

Residents and businesses affected by the spill

Purdue University: Prof. Andrew Whelton, Karen Casteloes, Xiangning Huang

University of South Alabama: Prof. Kevin White, Prof. Rajarshi Dey, Prof. Alex Beebe, Prof. Anne Boettcher, LaKia McMillan, Keven Kelley, Matt Connell, Jeff Gill, Caroline Novy, Mahmoud Alkhout, Frederick Avera, Coleman Miller

University of New Mexico: Prof. Jose Manuel Cerrato

Kanawha Charleston Health Department: Dr. Rahul Gupta

People Concerned About Chemical Safety: Maya Nye

West Virginia Clean Water Hub: Rob Goodwin

Downstream Strategies, Inc.: Evan Hansen

US Chemical Safety Board

West Virginia American Water Company

Eastman Chemical Company

Charleston Sanitary Board

State of West Virginia

Ohio State University: Krista Bryson

West Virginia University: Prof. Jennifer Weidhass

Metropolitan University of Denver: Prof. Randi Brazeau

USGS

AWWA: Alan Roberson, Dr. Kevin Morley

National Resources Defense Council: Erik Olson

Media representatives

West Virginia’s Government Stepped Forward Requesting Assistance

When were were in Charleston conducting water sampling and helping residents flush their plumbing systems, we approached the Governor’s staff with our findings that residents were becoming ill by flushing and that decisions being made were not based on science. Shortly after the NSF stepped in the West Virginia Governor’s office then contacted my team for assistance. In response, I called some good friends who recommended I contact Jeffrey Rosen, president of Corona Environmental Consulting LLC. After a brief conversation he and I flew to West Virginia, met with the State of West Virginia executive staff, and formed the West Virginia Testing Assessment Project (WVTAP).

WVTAP logo

WVTAP consisted of scientists and engineers from the United States, United Kingdom, and Israel. Team members had expertise in toxicology, risk assessment, statistics, environmental chemistry and microbiology, water treatment and distribution, analytical chemistry, environmental monitoring and sampling, sensory analysis, and media relations. More importantly though, this “project” was intended to answer critical questions West Virginians were demanding be answered regarding drinking water safety, and odor that no state or federal agency had acted upon before.

While WVTAP’s work ended in June 2014, my university team has continued it’s efforts and many more researchers have stepped-in funded through various agencies.

Whelton Governor meeting

The team included Dr. Andrew Whelton as well as Jeffrey Rosen, Dr. Jennifer Clancy, Tim Clancy, Dr. Tim Bartrand (CEC), Dr. Michael McGuire (McGuire, Inc.), Dr. Mel Suffet (UCLA), Dr. Craig Adams (Utah State Univ.), Dr. Michael Dourson, Jacqueline Patterson (TERA), Dr. Andy Eaton, Duane Luckenbill, Charles Neslund, (Eurofins). Others who participated include Paul Painter (ALS), Drs. Paul Rumsby (WRc), James Jacobus (MN DoH), Shai Ezra (Israel National Water Co Ltd), Stephen Robers (Univ. Florida)

Several other organizations initiated efforts help understand the chemical spill’s impact. For example, the United States National Toxicology Program initiated federally funded research to determine the health impacts associated with exposure to several of the chemicals in West Virginia’s drinking water. The United States Geological Survey reported on their drinking water and river water sampling efforts. Various universities have published chemical modeling and laboratory testing research on some of the chemicals in the drinking water and river. These results are explained below along those from with many other organizations.

A Few Major Discoveries from the Chemical Spill (so far…)

Numerous scientific reports have been released by various organizations since January 2014 regarding the chemical spill in West Virginia. Here are some quick observations of their findings. I did not include any of the new discoveries my team will release in the next couple months.

  • The chemical methyl 4-methylcyclohexanecarboxylate (MMCHC), an ingredient in the spilled liquid, was found in the drinking water by the US Geological Survey research team, but unlike the other chemicals 4-MCHM, PPH, and DiPPH, no safe drinking water exposure level was established for this compound.
  • Toxicologists assumed the toxicity of Crude MCHM is the same as the toxicity of analytical standard pure 4-MCHM. The analytical standard however has a different trans- / cis- isomer ratio than the crude MCHM. Researchers have recently discovered the volatility and potential for each isomer to sorb to organic materials differs substantially.
  • Chemicals present in Crude MCHM (one of the two major liquids present in the spilled liquid) volatilize into the air when contaminated drinking water is at room temperature and moreso when it is heated. Flushing hot water from a plumbing system would expose the resident to higher chemical levels than cold water flushing. No inhalation toxicity testing has been conducted.
  • The EPA developed an ambient air monitoring method for 4-MCHM and deployed it at the Freedom Industries site in late 2014. Some 4-MCHM was detected at that time, but well-below their 0.01 ppm-v air screening level.
  • Three different organizations told the affected population to apply three different flushing approaches.
  • The plumbing system contaminated water flushing guidance issued by the water company and approved by the State and Federal agencies ignored the health risks associated with inhalation exposure. As a result, residents became ill by following guidance issued to them by the agencies responding to the spill.
  • Plumbing system flushing did not reduce 4-MCHM levels for all homes. It is unclear how this guidance was designed as there is no documentation for it’s design. The responders stated objective of plumbing system flushing was to reduce 4-MCHM below 1000 parts per billion. Based on our testing, certain homes were more likely not be decontaminated compared to others [results will be coming soon].
  • By using a mass balance model, we have found plumbing system flushing guidance did not consider basic factors such as the size of the water heater needed to flush, low-flow fixtures, and typical building plumbing system designs. This was published in our 2015 research paper.
  • You can detect the licorice odor when contaminated drinking water contained less 0.15 parts per billion concentration of Crude MCHM and about 8 parts per billion of 4-MCHM.
  • The Center for Disease Control and Prevention’s (CDC) 4-MCHM screening level of 1000 parts per billion was inadequate and did not protect public health for all populations under all water use conditions.
  • The State of West Virginia drinking water screening level (health limit) of 10 parts per billion for 4-MCHM was adequate to protect public health for all populations under all water use conditions.
  • 4-MCHM was detected 400 miles downstream after the spill on the Ohio River. Water utilities 600 miles downstream took preventative measures.
  • Despite a variety of chemicals being spilled from the Freedom Industries tank site, river water testing did not consider any chemical other than 4-MCHM.
  • One month after the spill resident’s drinking water still contained 4-MCHM at low levels because the water company filters remained contaminated. Filters were replaced more than 2.5 months after the spill.
  • At high doses, animals exposed to ingredients of the spilled liquid experience acute health impacts.
  • There are still upwards of 50 lawsuits against Freedom Industries, Inc. (company who’s tanks ruptured), West Virginia American Water (water company), Eastman Chemical Company (chemical supplier).
  • The water company is considering installing online chemical analysis monitoring equipment for the Elk River.
  • The US Attorney is still investigating.
  • The Chemical Safety and Hazard Investigation Board (CSB) is still investigating.
  • Several former Freedom Industries employees have been indicted by the federal government and court dates are scheduled for 2015.

LIST OF PRINT RESOURCES DESCRIBING VARIOUS ASPECTS OF THE SPILL’S IMPACT BY US AND OTHER ORGANIZATIONS

Brief abstracts have been pasted below. Download the full reports at the links provided.

WEST VIRGINIA TESTING ASSESSMENT PROJECT (WVTAP)

The State of West Virginia funded an independent science and engineering research team to assist them in February 2014. There were three major objectives to their project: Objective #1 was to convene an international panel of experts to examine the West Virginia safety factor applied to their 10 part per billion (ppb) MCHM drinking water screening level. These individuals were be health risk assessment experts recruited from the scientific community. Objective #2 was to determine the drinking water odor threshold for MCHM. This action was important because it was possible people could detect MCHM odors at concentrations less than sensitive laboratory instruments can detect. This effort was be completed by some of the most well-known drinking water odor experts in the world. Objective #3 was to conduct a focused residential drinking water sampling field study. The collected data were then used to support the design of a larger more comprehensive program for the nine counties affected.

WVTAP Final Report, appendices, press releases, and statements. Access this report here.

US NATIONAL TOXICOLOGY PROGRAM

In response to the request by the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry for additional toxicology data on chemicals associated with the Elk River spill in West Virginia, NTP is conducting a number of studies of relatively short duration to provide information relevant to the potential exposures of the Charleston residents. Access their data here.

High throughput screening: Assays to derive information about cellular and molecular targets and use for predicting potential biological effects. Update from Dec. 2014. Structure activity relationship: A computational assessment that uses chemical structure to predict toxicological and biological properties. Update from Dec. 2014. Bacterial mutagenicity: Short-term tests to evaluate DNA damage in the bacteria S. typhimurium and E. coli caused by exposure to a chemical. Ongoing as of April 2015. Zebrafish developmental effects: Short-term study to evaluate developmental effects in a vertebrate model system. Ongoing as of April 2015. Nematode (Caenorhabditis elegans) toxicity: Short-term study to evaluate chemical effects over the life span of the organisms. Update from Mar. 2015. Rat toxicogenomic (5-day): Short-term toxicity studies that identify subtle effects of a chemical on molecular processes in the liver and kidney and examine toxic effects in blood and damage to DNA (genetic toxicity). Update from Feb. 2015. Irritation/ sensitization: Assays to evaluate the ability of chemicals to cause skin inflammation by directly damaging cells (irritation) or by inducing an immune response known as allergic hypersensitivitiy or contact allergy. Ongoing as of April 2015. Rat prenatal developmental toxicity (teratology): A study where rats are exposed to a chemical throughout pregnancy to determine if it produces adverse effects on the developing fetus. Update from Dec. 2014.

AFTER ACTION REVIEW CONDUCTED BY THE STATE OF WEST VIRGINIA

After Action Review, Emergency Response to January 9, 2014 Freedom Industries Chemical Leak. Peter Markum, Jimmy Gianato, James Hoyer. State of West Virginia. Access this report here.

PEER-REVIEWED JOURNAL ARTICLES

Decontaminating Chemically Contaminated Premise Plumbing Systems. Casteloes, K.S., Brazeau, R.H., Whelton, A.J. Environmental Science: Water Research and Technology, 2015, Published: August, 2015 DOI: 10.1080/19392699.2015.1048335.

DOWNLOAD FOR FREE. Access this report here.

Recent large-scale drinking water chemical contamination incidents in Canada and the U.S. have affected more than 1,000,000 and involved disparate premise plumbing decontamination approaches. In this study, past premise plumbing decontamination approaches were reviewed and a mass balance water heater model was developed and tested. Organic contaminants were the sole focus of this work. Thirty-nine contamination incidents were identified and contaminants had a wide range of physiochemical properties [i.e., log Kow, water solubility, vapor pressure]. Minimal data was available pertaining to flushing protocol design and effectiveness. Results showed that premise plumbing design, operational conditions, contaminants present and their properties, as well as building inhabitant safety have not been fully considered in flushing protocol design. Results indicated that flushing could decontaminate some, but not all plumbing systems. Several modeling scenarios showed contaminant levels exceeded drinking water health limits after flushing following recent large-scale water contamination incidents. Water saving fixtures and devices, water heater size, and flow rate affected contaminant removal efficiency. Modeling did not consider service lines or piping. This study provides a first step in the development of science based premise plumbing flushing protocols for organic contaminants.

Residential Tap Water Contamination Following the Freedom Industries Chemical Spill: Perceptions, Water Quality, and Health Impacts. Andrew J. Whelton, LaKia McMillan, Matt Connell, Keven M. Kelley, Jeff P. Gill , Kevin D. White, Rahul Gupta, Rajarshi Dey, and Caroline Novy (Purdue University, University of South Alabama, Kanawha Charleston Health Department). Environmental Science and Technology. 2015, 49 (2), pp 813–823.

DOWNLOAD FOR FREE, access this report here.

During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

The crude MCHM chemical spill in Charleston, W.Va. Rosen, Jeffrey S.; Whelton, Andrew J.; McGuire, Michael J.; Clancy, Jennifer L.; Bartrand, Timothy; Eaton, Andrew; Patterson, Jacqueline; Dourson, Michael; Nance, Patricia; Adams, Craig. Journal of the American Water Works Association. September 2014. Volume / Number: 106, Number 9, 65-74. Access this report here.

The Elk River spill is a call to action for all water utilities with hazardous chemicals in close proximity to their source water. Regardless of the regulations and responsibilities of state and federal regulators, water utilities have responsibilities and liabilities that should prompt action to identify possible chemical threats.

An unwanted licorice odor in a West Virginia water supply. McGuire, Michael J.; Rosen, Jeffrey; Whelton, Andrew J.; Suffet, I.H. Journal of the American Water Works Association. June 2014. Volume / Number: 106, Number 6, 72-82. Access this report here.

After the headline-making chemical spill into West Virginia’s Elk River in January 2014 affected nine counties and left residents with a licorice odor in their tap water, an expert-panel study was conducted to better understand the spill’s odor characteristics.

A network analysis of official Twitter accounts during the West Virginia water crisis. Morgan C. Getchell, Timothy L. Sellnow.Computers in Human Behavior, 2015, Published: July 26, 2015 DOI: 10.1016/j.chb.2015.06.044. Access the report here.

Online networks using Web 2.0 technologies have proven useful for communication among all parties involved in managing crises. These networks rapidly disseminate information allowing for coordination among organizations responding to the needs of those whose safety and wellbeing are threatened by the crisis and its aftermath. This study provides a network analysis of official Twitter accounts activated during the Charleston, West Virginia, water contamination crisis in 2014. The city’s water supply was rendered unfit for drinking or bathing after 7500 gallons of a toxic chemical leaked into the Elk River. The network created by the 41 Twitter accounts associated with the West Virginia water contamination lacked density, contained several isolates, exchanged information quickly (geodesic distance diameter), and contained both national and local accounts. The lack of density indicates limited exchange of information, particularly between national and federal accounts. The rapid dissemination of the information that was shared and the fact that some accounts did bridge the local and national gap, however, show the positive potential for such networks in responding to crises.

Partitioning Behavior of 4-Methyl Cyclohexane Methanol in Two Appalachain Coal Preparation Plants. Aaron Noble, Y. Thomas He, Paul Ziemkiiewciz. International Journal of Coal Preparation and Utilization, 2015, Published: June 14, 2015 DOI: 10.1080/19392699.2015.1048335. Access the report here.

To assess the environmental fate and partitioning of 4-methyl cyclohexane methanol (MCHM), plant-wide water sampling surveys were conducted at two Appalachian coal preparation plants. Samples were recovered from various streams within the coal preparation plants as well as environmental discharges, including impoundment drains and groundwater monitoring wells. The results indicate measurable MCHM concentrations are only found immediately around the flotation circuit (feed, concentrate, and tailings). Samples from downstream units, including thickeners, impoundments, and discharge points show no measurable concentration of MCHM implying that volatilization and adsorption are strongly influencing the measurable concentration.

Self-Reported Household Impacts of Large-Scale Chemical Contamination of the Public Water Supply, Charleston, West Virginia, USA. Charles P. Schade , Nasandra Wright, Rahul Gupta, David A. Latif, Ayan Jha, John Robinson. PLOS One, 2015, Published: May 7, 2015 DOI: 10.1371/journal.pone.0126744. Access the report here.

A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode’s health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with “do not use” orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average “B” rating, whereas some federal and water company communication received a “D” grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication.

Toxicity Assessment of 4-Methyl-1-cyclohexanemethanol and Its Metabolites in Response to a Recent Chemical Spill in West Virginia, USA. Jiaqi Lan , Man Hu , Ce Gao , Akram Alshawabkeh , and April Z. Gu. Environ. Sci. Technol., 2015, 49 (10), pp 6284–6293. Access this report here.

The large-scale chemical spill on January 9, 2014 from coal processing and cleaning storage tanks of Freedom Industries in Charleston affected the drinking water supply to 300,000 people in Charleston, West Virginia metropolitan, while the short-term and long-term health impacts remain largely unknown and need to be assessed and monitored. There is a lack of publically available toxicological information for the main contaminant 4-methyl-1-cyclohexanemethanol (4-MCHM). Particularly, little is known about 4-MCHM metabolites and their toxicity. This study reports timely and original results of the mechanistic toxicity assessment of 4-MCHM and its metabolites via a newly developed quantitative toxicogenomics approach, employing proteomics analysis in yeast cells and transcriptional analysis in human cells. These results suggested that, although 4-MCHM is considered only moderately toxic based on the previous limited acute toxicity evaluation, 4-MCHM metabolites were likely more toxic than 4-MCHM in both yeast and human cells, with different toxicity profiles and potential mechanisms. In the yeast library, 4-MCHM mainly induced chemical stress related to transmembrane transport and transporter activity, while 4-MCHM metabolites of S9 mainly induced oxidative stress related to antioxidant activity and oxidoreductase activity. With human A549 cells, 4-MCHM mainly induced DNA damage-related biomarkers, which indicates that 4-MCHM is related to genotoxicity due to its DNA damage effect on human cells and therefore warrants further chronic carcinogenesis evaluation.

4-Methylcyclohexane methanol. William E. Luttrell. Journal of Chemical Health and Safety, 2015, 22 (1), pp 39–41. Access this report here.

No abstract

Consumer panel estimates of odor thresholds for crude 4-methylcyclohexanemethanol. McGuire, Michael J.; Suffet, I.H. (Mel); Rosen, Jeffrey. Journal of the American Water Works Association. October 2014. Volume / Number: 106, Number 10, E445-E458. Access this report here.

On Jan. 9, 2014, a spill of “crude” 4-methylcyclohexanemethanol (MCHM) into the Elk River in West Virginia contaminated the water supply for 300,000 people. The crude MCHM caused an intense licorice odor in the drinking water that supplied the area in and around Charleston, W.Va. A sensitive analytical method developed by a commercial laboratory was used to verify the concentrations of crude MCHM presented to a consumer panel selected using specific criteria. The method used for the panel studies was ASTM E679-04, which has been used to determine other odor thresholds in water. The odor threshold and odor recognition concentrations for crude MCHM in water were estimated by the consumer panel to be 0.55 and 7.4 µg/L, respectively. Two estimates of the odor objection concentration were 7.7 and 8.8 µg/L.

Tale of Two Isomers: Complexities of Human Odor Perception for cis- and trans-4-Methylcyclohexane Methanol from the Chemical Spill in West Virginia. Daniel L. Gallagher, Katherine Phetxumphou, Elizabeth Smiley, and Andrea M. Dietrich (Virginia Tech). Environmental Science & Technology, 2015, 49 (3), pp 1319–1327. Access this report here.

Application of gas chromatography with mass spectrometric and human olfactory “sniffer” detectors reveals the nature of odorous chemicals from an industrial chemical spill. Crude 4-methylcyclohexane methanol (4-MCHM) spilled in a river and then contaminated drinking water and air for over 300000 consumers living in West Virginia. Olfactory gas chromatography allows investigators to independently measure the odor of chemical components in a mixture. Crude 4-MCHM is comprised of several major cyclohexane components, four of which have distinct isomer pairs. The cis- and trans-4-MCHM isomers are the only components to have distinct odors at the concentrations used in this study. The trans-4-MCHM is the dominant odorant with descriptors of “licorice” and “sweet”. Trans-4-MCHM has an air odor threshold concentration of 0.060 ppb-v (95% CI: 0.040–0.091). The odor threshold concentrations are not influenced by gender or age but are lower by a factor of 5 for individuals with prior exposure compared to naïve subjects. Individual trans-4-MCHM odor threshold concentrations vary by more than a factor of 100. The cis-4-MCHM isomer has approximately a 2000-fold higher odor threshold concentration, different descriptors, and an even wider individual response range.

Partitioning, Aqueous Solubility, and Dipole Moment Data for cis- and trans-(4-Methylcyclohexyl) methanol, Principal Contaminants of the West Virginia Chemical Spill. Andrea M. Dietrich, Ashly Thomas, Yang Zhao, Elizabeth Smiley, Narasimhamurthy Shanaiah, Megan Ahart, Katherine A. Charbonnet, Nathan J. DeYonker, William A. Alexander, and Daniel L. Gallagher (Virginia Tech and University of Memphis). Environmental Science & Technology Letters. Access this report here.

In 2014, the U.S. National Response Center recorded more than 30000 incidents of oil spills, chemical releases, or maritime security issues, including crude (4-methylcyclohexyl) methanol (MCHM) that contaminated river and drinking water in West Virginia. This research yielded physicochemical partitioning data for the two major compounds released in West Virginia, cis- and trans-(4-methylcyclohexyl)methanol. Octanol–water partition coefficients (KOW) were 225 for cis-4-MCHM and 291 for trans-4-MCHM. The aqueous solubility for total 4-MCHM was 2250 mg/L at 23 °C; solubilities of individual isomers were dependent on their mole fractions. The cis isomer was more soluble and less well sorbed to activated carbon than the trans isomer, consistent with its lower KOW. The partition behavior is supported by a larger computed solvated dipole moment for the cis form than for the trans form at the MP2 aug-cc-pwCVDZ SMD level of theory. Different partition properties would result in the differential fate and transport of cis- and trans-4-MCHM in aqueous environments.

Investigation of MCHM transport mechanisms and fate: Implications for coal beneficiation. Y. Thomas He, Aaron Noble, Paul Ziemkiewicz (West Virginia University). Chemosphere. Volume 127, May 2015, Pages 158–163. Access this report here.

4-Methyl cyclohexane methanol (MCHM) is a flotation reagent often used in fine coal beneficiation and notably involved in the January 9, 2014 Elk River chemical spill in Charleston, WV. This study investigates the mechanisms controlling the transport and fate of MCHM in coal beneficiation plants and surrounding environments. Processes such as volatilization, sorption, and leaching were evaluated through laboratory batch and column experiments. The results indicate volatilization and sorption are important mechanisms which influence the removal of MCHM from water, with sorption being the most significant removal mechanism over short time scales (<1 h). Additionally, leaching experiments show both coal and tailings have high affinity for MCHM, and this reagent does not desorb readily. Overall, the results from these experiments indicate that MCHM is either volatilized or sorbed during coal beneficiation, and it is not likely to transport out of coal beneficiation plant. Thus, use of MCHM in coal beneficiation plant is not likely to pose threat to either surface or groundwater under normal operating conditions.

Determination of (4-methylcyclohexyl)methanol isomers by heated purge-and-trap GC/MS in water samples from the 2014 Elk River, West Virginia, chemical spill. William T. Foreman,  Donna L. Rose, Douglas B. Chambers, Angela S. Crain, Lucinda K. Murtagh, Haresh Thakellapalli, Kung K. Wang (USGS and West Virginia University). Chemosphere. 2014.

(DOWNLOAD FOR FREE, Open Access) Access this report here.

A heated purge-and-trap gas chromatography/mass spectrometry method was used to determine the cis- and trans-isomers of (4-methylcyclohexyl)methanol (4-MCHM), the reported major component of the Crude MCHM/Dowanol™ PPh glycol ether material spilled into the Elk River upriver from Charleston, West Virginia, on January 9, 2014. The trans-isomer eluted first and method detection limits were 0.16-μg L−1trans-, 0.28-μg L−1cis-, and 0.4-μg L−1 Total (total response of isomers) 4-MCHM. Estimated concentrations in the spill source material were 491-g L−1trans- and 277-g L−1cis-4-MCHM, the sum constituting 84% of the source material assuming its density equaled 4-MCHM. Elk River samples collected ⩽ 3.2 km downriver from the spill on January 15 had low (⩽2.9 μg L−1 Total) 4-MCHM concentrations, whereas the isomers were not detected in samples collected 2 d earlier at the same sites. Similar 4-MCHM concentrations (range 4.2–5.5 μg L−1 Total) occurred for samples of the Ohio River at Louisville, Kentucky, on January 17, ∼630 km downriver from the spill. Total 4-MCHM concentrations in Charleston, WV, office tap water decreased from 129 μg L−1 on January 27 to 2.2 μg L−1 on February 3, but remained detectable in tap samples through final collection on February 25 indicating some persistence of 4-MCHM within the water distribution system. One isomer of methyl 4-methylcyclohexanecarboxylate was detected in all Ohio River and tap water samples, and both isomers were detected in the source material spilled.

Modeling the Fate and Transport of a Chemical Spill in the Elk River, West Virginia. Bahadur, R. and Samuels, W (Center for Water Science and Engineering). (2014). Journal of Environmental Engineering. Access this report here.

On January 9, 2014, an estimated 37,854 L (10,000 gal.) of 4-methycyclohexane methanol (MCHM) and propylene glycol phenyl ether, solvents used in coal processing, leaked from a ruptured container into the Elk River. The spill, just 1.61 km (1 mi) upstream from a water-treatment plant, forced officials to ban residents and businesses in nine West Virginia counties from using the water for anything other than flushing toilets or fighting fires. An estimated 300,000 West Virginia residents were affected by the spill. This paper reports on the modeling efforts undertaken to forecast time of travel and concentration of MCHM as the plume traveled downstream toward the Greater Cincinnati Water Works (GCWW) intake. The issues addressed include the flow regime, source term describing the spill event, use of real-time and forecast streamflow, and comparison of model results with observations at Charleston (West Virginia), Huntington (West Virginia), and the GCWW intake. The incident-command tool for drinking-water protection (ICWater) was used to model time of travel and concentration of MCHM. Downstream tracing was initiated at the spill site to forecast the location of the leading edge, peak concentration, and trailing edge of the plume for drinking-water intakes as far downstream as 402 km (250 mi).

Modeling of the Elk river spill 2014. Lucien Stolze, Federico Volpin (Technical University of Denmark). Environmental Science and Pollution Research. March 2015. Access this report here.

A dispersion-advection model was used to simulate the Elk river chemical spill 2014. The numerical and analytical solutions were used to predict the concentrations of 4-methylcyclohexane methanol (MCHM) at the water treatment plants located along the Elk and Kanawha rivers. The results are of similar magnitude as measured concentrations although a time-lag was found between modeled and measured plume arrival likely due to accumulation of systematic errors. Considering MCHM guidelines for drinking water, the spill represented a serious health threat through the water up taken by the treatment plant located on the Elk river and it also constituted a risk of contamination for the drinking water produced by treatment plants located on the Kanawha river.

PERSPECTIVE PUBLICATIONS

What We’ve Learned From the West Virginia Water Crisis. AJ Whelton, R Gupta. 2014. National Society of Professional Engineers Magazine. Access this here or  here PE News Magazine Op-Ed.

Crisis and Emergency Risk Communication: Lessons from the Elk River Spill. John Manuel. Environmental Health Perspectives. 2014 Aug; 122(8): A214–A219. Access this here.

Re-Emergence of Emerging Contaminants. Jerald L. Schnoor. Environmental Science & Technology 2014, 48 (19), 11019–11020. Access this here.

Responding to Crisis: The West Virginia Chemical Spill. William J. Cooper. Environmental Science & Technology. 2014, 48 (6), pp 3095–3095. Access this here.

Chemical Spill in West Virginia Triggers More Studies to Understand Contaminants. Randy Showstack. Transactions American Geophysical Union. Volume 95, Issue 7, pages 61–63, 18 February 2014. Access this here.

The Elk River MCHM Spill: A Cast Study in Managing Environmental Risks. Lucas Rojas Mendoza. InsuranceNewsNet. May 6, 2015. Access this here.

 

Questions and comments about this post should be directed to Professor Andrew Whelton at awhelton@purdue.edu.

—This post may be updated as more information becomes available—

Posted in Instruction, Research, Team | Comments Off

60 Minute Presentation from the Indiana Stormwater & Drainage Conf. posted: West Va. Chemical Spill

On February 12, Dr. Whelton delivered a 60 minute presentation regarding the West Va. Chemical Spill Response and Recovery to attendees of the Indiana Stormwater and Drainage Conference. The event was held in West Lafayette, Indiana and was attended by State regulators, infrastructure and environmental professionals from municipalities, surveyors, and representatives from the infrastructure and environmental design, build, and maintenance industry.  Several questions were raised by the audience some of which include “Did Freedom Industries have secondary containment onsite? How much liquid did the failed tank hold? Is the CDC approaching their responsibilities differently seeing that people were harmed by flushing contaminated water into their homes?”

The title of the presentation was Failing to Contain a Spill Upstream of a Drinking Water Intake: Lessons Learned from the Freedom Industries Chemical SpillA copy of the presentation can be downloaded here: Whelton Storm presentation February 2015. Additional information about detecting, investigating, and recovering from contamination events will be posted in the coming months.

Posted in Instruction, Research | Tagged , , , , , , , , , , , , , , | Comments Off

New Presentation: West Va. Chemical Spill & Plastic Plumbing System Water Quality

On February 10, Dr. Whelton delivered a presentation at the U.S. Environmental Protection Agency’s Cincinnati, Ohio office at the invitation of NCET (Network for Cincinnati EPA Trainee) Program. The title of the presentation was Drinking Water Plumbing Systems: Green Buildings and Chemical Contamination. The presentation described two different U.S. National Science Foundation (NSF) research projects. One being his team’s past and ongoing research pertaining to the West Virginia chemical spill and the second project pertaining to their investigation of drinking water quality in plastic plumbing systems in the U.S. A copy of the presentation can be downloaded here: Whelton EPA presentation February 2015. A few slides were added to this file following his presentation. These slides include links to his team’s recently published scientific papers about these topics. Additional information about these research activities will be posted in the coming months.

Posted in Instruction, Research | Tagged , , , , , , , , , , , , , , | Comments Off

West Va. Chemical Spill Research Results: Here’s a Progress Update (revised Jan 1, 2015)

For many months, our University students and faculty colleagues have been hard at work conducting new laboratory experiments and extensively analyzing Freedom Industries chemical spill data. Below are published reports (that I am aware of) regarding the West Virginia chemical spill. If you know of more reports or publicly available testimony due to litigation please send me the links and I’ll post them.
My team continue’s to conduct additional follow-up experiments and these will be announced on Twitter (@TheWheltonGroup) and posted here when completed.

The journal of Environmental Science & Technology accepted our peer-review report. The journal published this  manuscript on their website. This document, “Residential Tap Water Contamination….” is available and the website information is listed below. If you are interested in what happened during and since January 9, 2014, you really should read this publication. In addition to an analysis of human health impact data, tap water quality, and flushing data, a very detailed timeline will accompany the report.

Related Scientific Reports and Events 
Below we have listed a number of activities we along with other researchers have participated in following the Freedom Industries chemical spill. The items listed below include scientific reports, presentations, town hall meetings, a public forum held at Purdue University, and even an OP-ED. We have also listed links to other documents that have been publicly released by other organizations.
Related 2014 Scientific Reports
American Chemical Society journal of Environmental Science & Technology
Journal of the American Water Works Association
Environmental Health Perspectives
West Va. Testing Assessment Project (WVTAP) reports (http://www.wvtapprogram.com)
  • In-Home Tap Water Sampling Plan. 2014. Rosen et al.
  • Crude MCHM Oxidation Study Technical Memo. 2014. McGuire et al.
  • Investigation of Tentatively Identified Compounds. 2014. Eaton et al.
  • Health Effects Expert Panel Report. 2014. Dourson et al.
  • [OUR STUDY] 10 Home Study: Tap water chemical analysis report. 2014. Whelton et al.
  • [OUR STUDY] 10 Home Study: Resident behavior, perceptions, and residence characteristics report. 2014. Whelton et al.
  • Consumer Panel Technical Memorandum. 2014. McGuire et al.
  • Technical Memorandum: Expert Panel Estimates of the Odor Threshold Concentration, Odor Recognition Concentration and Odor Objection Concentration for Crude methylcyclohexanemethanol in Water. 2014. McGuire et al.
  • [OUR STUDY] Literature Review: Health Effects for Chemicals in 2014 West Virginia Chemical Release: Crude MCHM Compounds, PPH and DiPPH. 2014. Adams et al.

There are also reports from the EPA, CDC, West Va. State Agencies, and Freedom Industries consultants. Many of these are cited in the soon to be published report from our team. Check back soon.

Our Presentations to the Public, Universities, Public Health, Water Industry, and Journalism Professionals
  • Defining Indiana’s Water Needs: Research and Solutions, Indianapolis, Indiana
  • Society of Risk Analysis Conference. Denver, Colorado
  • Evergreen Arts and Humanities Series of Washington State Community College. Marietta, Ohio
  • Department of Civil and Environmental Engineering. UMASS-Amherst. Amherst, Massachusetts
  • U.S. Chemical Safety and Hazard Investigation Board. Washington, D.C.
  • American Water Works Association (AWWA) Water Quality Technology Conference. New Orleans, Louisiana
  • Civil Engineering Hydraulics Program, Purdue University. West Lafayette, Indiana
  • AWWA Alabama Mississippi Section Annual Conference. Point Clear, Alabama
  • AWWA Water Infrastructure Conference. Atlanta, Georgia
  • Society of the Environmental Journalists Annual Conference. New Orleans, Louisiana
  • AWWA New England Section Annual Conference. Rockport, Maine
  • National Association of City and County Health Officials (NACCHO) Annual Conference. Atlanta, Georgia
  • Division of Environmental and Ecological Engineering. Purdue University. West Lafayette, Indiana
  • Advanced Material Research Institute. University of New Orleans, New Orleans, Louisiana
Opinion Pieces (OP-ED) By Us and Others
Our Participation in Public Forums, Educational Media, and Town Hall Meetings
  • “Science Nation” public service segment for the US National Science Foundation. In progress
  • Communications, Community, and Science: The Freedom Industries Chemical Spill Public Forum. West Lafayette, Indiana. Nov. 2014.
  • WVTAP public meeting. Charleston, West Virginia. Mar. 2014.
  • Ohio Valley Environmental Coalition (OVEC) sponsored town hall meetings at Marshall University in Huntington, WV and Putnam County, WV. Feb. 2014.
  • YouTube.com plumbing system flushing video developed for West Virginia residents by Krista Bryson, Ohio State University. Posted online at West Virginia Water Crisis: Exclusive *Crucial* Information about Flushing. Jan. 2014. https://www.youtube.com/watch?v=Rz3Y7rjnqEs
  • Blog posting at the West Virginia Water Crisis Blog. Your Questions Answered: Flushing Recommendations, Water and Water Systems Safety, and Health Concerns. Jan. 2014.  www.wvwatercrisis.com
Who Has or is Researching Issues Surrounding this Spill?
Below is a list of which organizations have or are currently conducting research in response to the Freedom Industries chemical spill. If you know of others, please email us and we will update this list. We tried to breakout the types of research into general categories. Some research teams are working on multiple topics. The organizations are listed alphabetically.
Risk Communication, Social, and Behavioral Impacts
Corona Environmental Consulting, Georgetown University, Harvard University, Ohio State University, Purdue University, University of Charleston, University of Kentucky, University Wisconsin-Madison
Environmental Sampling, Monitoring, and Modeling
Corona Environmental Consulting, Purdue University, Technical University of Denmark, University of Memphis, USGS, Virginia Tech, West Virginia University
Water Infrastructure Issues
Corona Environmental Consulting, Eurofins Eaton Analytical, Purdue University, McGuire Inc., UCLA, Utah State University, Virginia Tech, West Virginia University
Toxicological Examination
NIH National Toxicology Program, Northeastern University, Purdue University, TERA, University of South Alabama, Utah State University, USGS

 

Posted in Research, Team | Tagged , , , , | Comments Off

Plastic Drinking Water Plumbing System Results: Evaluated Leaching, Bacteria Growth, Carcinogens, and Odors

Over the past couple years we have tested many different brands of plastic pipe to determine the degree these plumbing materials can alter drinking water quality. We have also characterized drinking water from plastic plumbing systems in six States. This work continues to be funded by the US National Science Foundation (NSF) to enable us to better understand the phenomena that control the in-home drinking water quality.
Please browse below and contact us if you have any questions. Above all, we believe that it is important that transparent plumbing system material testing data be available so that construction professionals and homeowners can make the best material selection decision for their clients and themselves.
Contact Us if you have any questions at awhelton@purdue.edu.

List of Brands of Pipe we Have Tested

PEX-Uphonor, Sharkbite, Viega, Nibco, Apollo, AquaPEX, DuraPEX, Zurn
PP-Aquatherm
HDPE-ADS Polyflex
PVC-Charlotte
Don’t see your brand listed? Let us know and email us at awhelton@purdue.edu.

What We Tested during 1 Month Exposure of New Pipes

1. Ability of each material to:

Leach chemicals that promote bacteria growth in plumbing systems
Leach chemicals that have existing health limits
Cause the drinking water to have an odor
Leach chemicals that can be transformed into carcinogenic byproducts that have health limits
Leach chemicals that do not have existing health limits

2. Each material’s resistance to degradation and resistance to permeation

3. Each material’s ability to reduce chlorine disinfectant level

4. The role of chlorine disinfectant on affecting the drinking water chemical and odor impacts

NOTE: All materials we have tested are available in US building supply stores. All materials tested had been certified by the nonprofit organization, National Sanitation Foundation International (NSFI) Standard 61.

Location of the In-Home PEX Plumbing Systems We Tested

PEXSystem
Alabama [Fairhope]
Colorado [Golden]
Maryland [Gaithersburg]
Oklahoma [Yukon]
Pennsylvania [West Chester]
Virginia [Floyd]
We also determined how pipe leaching can be affected by the cleaning method required by building code and the plumber.
Over the next several months more of our testing results will be made available. Many reports and publications have already been published and presented.
We will be presenting some of these results at the USGBC GreenBuild Conference in New Orleans, LA here. Dr. Alexandra Stenson and Andrew Whelton are principal investigators on the NSF project. Rebecca Bryant, Managing Principal of Watershed, LLC is also one of the project leaders.
Posted in Research | Leave a comment

Our West Virginia Water Crisis OP-ED was Published by the National Society of Professional Engineers (NSPE)

NSPE OPED WheltonGupta (2014)The National Society of Professional Engineers (NSPE) published our OP-ED in their August/September NSPE Magazine. The submission described part of our efforts following the 2014 West Virginia large-scale drinking water contamination disaster. Specifically, eight lessons learned were discussed. The NSPE website can be found here and a copy of the PDF OP-ED can be found here: Download the NSPE OPED WheltonGupta (2014) here).

Results of this OP-ED were made possible because of the contributions of many people. Students LaKia McMillan, Matt Connell, Jeff Gill, Keven Kelley, Caroline Novy, Jesus Estaba, Freddie Avera, Maryam Salehi, and Professor Kevin White are greatly appreciated. Funding for some of the effort conducted was provided to us by the US National Science Foundation and State of West Virginia. We also had the privilege of working with Corona Environmental Consulting President Jeffrey Rosen, along with Ayhaun Ergul, Jennifer Clancy, Tim Clancy, Tim Bartrand, Toxicological Excellence in Risk Assessment Executive director Mike Dourson and Jacqueline Patterson,  Utah State University Professor Craig Adams, CEO Michael J. McGuire, along with many other experts from West Virginia, across the US, Israel, and the UK.

Posted in Research | Tagged , , , , , | Comments Off

Toledo Water Crisis Report: Perspective, What do we know?

Late Monday afternoon August 4, the City of Toledo released their Preliminary Water Crisis Study Report. This report describes some of the data and actions taken during the recent large-scale tap water contamination incident. Earlier in the day, the Mayor of Toledo declared tap water safe to drink for the entire 500,000 person area. The Toledo-Lucas County Health Department then issued guidance to residents and businesses on how to flush their plumbing systems.

I provided some thoughts about their report below mainly focusing on tap water contamination response and recovery. In short, their preliminary report does not address many questions pertaining to the degree scientific principles were considered in water use, water testing, and flushing recommendations. The report also does not answer many of the public’s remaining questions. For an incident that affected 500,000 people, residents being told to flush contaminated water into their homes, and that the new water is safe, the lack of information provided by officials as of today is remarkable. Hopefully someone explains what happened and what data they used to make decisions in the coming days.

WheltonTweet Ban and Lack of Data

Who actually was involved in the response and decisions remains somewhat of a mystery

The report cites the Mayor, City of Toledo, Toledo-Lucas County Health Department, the Oregon treatment plant, Lake Superior University, Ohio EPA Columbus, and US EPA Cincinnati, but has no mention of CDC. According to the report the organizations listed above were the only organizations that had a hand in the data collection, analysis, reporting, and decision making process. Publicly, the health department proclaimed CDC was involved during an interview.  But CDC was not listed in the City of Toledo report? Who was involved and what advice did they provide? This is important information as it can clarify why certain decisions were made and who provided information.  I know many folks in the drinking water industry including other water companies and experts that contacted Ohio organizations involved and offered assistance. From what I understand, responders did not accept any assistance except from the few organizations listed above. Even so, they seem to have had contact with other organizations they did not disclose in their report (i.e., CDC).

Did officials mislead the public? It was really a Do Not Use order for some of the residents

The report portrays the responders considering the incident as a Do Not Drink /Do Not Boil Order, but that is not quite accurate. After issuing the Do Not Drink/Do Not Boil Order, the Toledo-Lucas County Health Department actually went further and publicly advised immunocompromised persons, children, and breastfeeding individuals not to have any contact with the water. That’s not a Do Not Drink Order. That’s a Do Not Use Order more similar to what was issued in West Virginia following the Crude MCHM Chemical Spill where 300,000 people were denied access to tap water for up to 10 days. The Toledo-Lucas County Health Department also advised people it was okay to brush their teeth with the contaminated water, then pulled back on that recommendation a day later. These conflicting messages implied that the responders were creating guidance on the fly, and/or did not understand what a Do Not Drink Order was.  The media kept reporting Do Not Drink orders, but the Health Department was advising the population to do more than simply not drink the water. The incident was a Do Not Use order for some people not just a Do Not Drink /Do Not Boil order.

Some of the reported microcystin data could be suspect because of water collection practices. It was a good decision to use multiple labs.

Water samples that were shipped to Lake Superior State University had chlorine residual present. Microcystin (toxin) is known to react and degrade (and transform into other compounds) when exposed to chlorine. Thus, during shipping some of the toxin could have been destroyed or transformed into other compounds. To limit these changes, chlorine residual neutralization should have been considered once the water was collected. No justification of why samples were allowed to react with chlorine during transport (or not) was provided. Microcystin experts reading this will likely have more insight into the analytical methods. Kudos to Lake Superior State University for their work on this effort. Great to see independent experts involved. It would be helpful if officials could explain their methods.

Were the water samples collected representative of the highest chemical levels in the water  system and at exposure locations?

During a quick response, responders generally collect water at easy to access locations such as at the source (i.e., Lake Erie), water plant, and within in the water distribution system (i.e., hydrants, restaurants, etc). This information is important to understand the scale of contamination (where the tainted water is). After tap water leaves the treatment plant, it does however take tap water different times to travel to different parts of the community so some tap water may be newer in certain other parts of the water system. Why were certain water distribution system locations selected for sampling? Do they  represent the entire water system or are they biased? Reasoning why the certain locations were selected was not provided in the report. Did the responders sample to find out the highest chemical levels in the water distribution system? Were they representative?

Also important to point out is that tap water quality at a fire hydrant is not necessarily the same as tap water quality in a residential building. It remains unclear if responders tested in-home locations. [BP Gas station plumbing systems are not the same as two story home plumbing systems, dormitories, or apartment complexes].Restaurants, government buildings, hydrants, gas stations, etc. were some of the tap water collection points. This is similar to West Virginia’s initial response. West Virginia only tested hydrants, government buildings, and businesses. But, the question everyone asked in West Virginia that turned out to be important was what chemical levels were in found at the exposure points….within people’s homes?

If Toledo learned from West Virginia, they would have considered sampling in homes. What did they do and why did they do it?

The plumbing system flushing protocol was never tested before residents were told to partake

The ability of the flushing protocol to reduce chemical levels within homes was never tested. The reason for this decision by the responders was not described in the report. Moreover, no personal safety guidance was provided to residents about how to avoid tap water chemical exposure during flushing. Was it okay to flush hot water with your children in the room or house? (see below for some scientific analysis)

The Toledo-Lucas County Health Department plumbing system flushing guidelines were nearly identical to those used in West Virginia (where people experienced acute chemical exposure symptoms while following those guidelines). Similar to West Virginia’s flushing guidelines, the Toledo-Lucas County Health Department guidelines are also similar to those when tap water with high levels of pipe corrosion products such lead and copper needs to be removed from plumbing systems. Water utilities have a long history of flushing certain chemicals out of their system to include lead, copper, iron, sediment, etc. I am not aware of any existing protocols for flushing microcystin contaminated tap water from homes however. This could be the first. What conditions would have been needed for officials to “test” the protocol before directing residents to partake?

There are key differences between the Toledo and West Virginia tap water contamination incidents that pertaining to flushing. Chemicals in West Virginia’s tap water were volatile meaning that they would readily evaporate from water into air. When West Virginians opened their taps to flush contaminated tap water, chemicals volatilized into the air. Flushing hot water in West Virginia exacerbated this problem. Many homes in West Virginia my team visited had poor ventilation bathrooms and chemically contaminated air accumulated. Like the West Virginia incident, hot water flushing was recommended in Toledo. But, in Toledo, microcystin (and likely its degradation products) were much less volatile. So, the probability of chemicals in Toledo’s water evaporating into air was much less. Still, should hot water flushing been recommended in Ohio knowing that organic chemicals volatilize into air faster than cold water?

As of August 5, no increased reports of acute chemical exposure symptoms had been reported in the Toledo area which is a good sign. I hope they address this topic in the coming days.

In Closing…

The Toledo incident again demonstrates that in the US, large portions of our population can be denied access to safe tap water and responding to contamination incidents is very complex. Seven months ago 15% of the people who live in West Virginia experienced something very similar.

I have no doubt officials responding to the Toledo incident worked very long hours, likely days without sleep and sacrificed many hours away from family and friends to help. We will never know the names of many of these individuals, but they should be widely thanked for their service in helping investigate and recover the community from this incident. These individuals helped out because they care about the health and welfare of the community similar to what I witnessed in West Virginia.

Several hours after the City Council meeting we have a little more information, but not much. According to the City of Toledo, EPA still has not released all of their data. There were tremendous data release delays by Federal government agencies during the West Virginia crisis. Federal agencies, from my perspective, were at times completely detached from the timeline of people who lived through the incident. The State of West Virginia requested numerous times for Federal agencies to provide data and results took months to obtain. Federal agencies were on their own timetable. Will that be the case in Ohio?

If residents affected by this incident are to feel confident in their tap water and officials, they need and deserve answers soon. If the Nation is to learn from this incident, more information must be made public. While there clearly is a need for improved nutrient control near Lake Erie, communities across the Nation can benefit from learning about the good and bad of this large-scale tap water contamination response. It’s inevitable; We all need safe tap water and these incidents will happen again.

Sincerely,

Andrew Whelton, Ph.D.

NOTE: This post could be revised if information is brought to my attention requiring the post to be revised. Revision explanations, if any, will be posted at the bottom of the page. 
Posted in Research | Tagged , , , | Comments Off

Toledo and Surrounding Area: When they Tell you to Flush Toxin Tap Water from Your Homes ….

Dear Toledo Residents Affected by the Tap Water Contamination Incident:
I am sorry that you were affected by this contaminated tap water incident. As of 9pm EST Sunday August 3, the responders have not made public really any information (who’s involved, who’s providing advice, sampling results, locations, an explicit step-wise strategy, etc.). There is no single website you can go to find all of the information. Conflicting information has been released about what is and is not recommended for tap water contact. This no doubt is frustrating and you are a resilient community that has kept good spirit. The bottled water provisions and your National Guard are downright tremendous. Many acts of kindness from your community and across the state are touching. Many people across the country are thinking about you.
Hopefully, over the next couple days, the officials will shift your incident into one of recovery. As of right now, they seem to still be trying to figure out the extent of contamination. [If they had released data, this would be more clear].
Officials will likely mandate flushing of the buried water pipes, storage tanks, and decontamination of your home plumbing systems. After, of course, the results of the water testing inside resident homes are released (if any). Officials will likely recommend that you purge contaminated water from your home plumbing systems. You need to be aware of a few issues for the protection of your friends and family.
Shortly after the January 2014 West Virginia Chemical Spill in and large-scale tap water contamination incident, my students and I drove to West Virginia to help those affected. We were unfunded at the time, but in the coming weeks the NSF provided us emergency funding because of the scientific emergency need there. Prior to being a faculty member, I worked for the US Army and in research positions examining chemical fate in plumbing systems including decontamination. You can find our experiences on our website http://www.southce.org/ajwhelton and those for which I was asked by West Virginia Governor Tomblin to assist the state respond at http://www.WVTAPprogram.com.
In West Virginia, before being called in by the West Virginia Governor’s office to assist them, my university team discovered that the plumbing system flushing protocol endorsed by the State, EPA, CDC, water utility, and health departments caused many people (including myself and a student) to become ill. When we arrived residents were being told to flush their plumbing systems using this protocol. My team and I flushed several resident homes in an effort to determine how well the method worked.
Of the many issues with the West Virginia protocol, flushing hot water was recommended [bad idea], only flushing one time for 15 minutes was recommended [bad idea], and the protocol was never field tested to see if it worked so the population tested it on themselves [bad idea]. There were many other issues with this protocol which did not warn people about personal safety (gloves, masks, chemical sensitivity, pregnant individuals), rooms with poor or no ventilation (no windows, vent fans, etc.) [bad, bad ideas]. Nonetheless, none of the Federal and State organizations involved expressed concern about this before the 300,000 residents were directed to flush their plumbing systems. I pasted a weblink to the West Virginia protocol below. DO NOT directly apply the West Virginia approach in Toledo.
During the next week, you will embark on an effort to recover your plumbing systems and purge this contaminated water. Officials will ask you to take certain actions. It is critically important what you are told to do does NOT expose you or your family to harmful vapors. The Crude MCHM contaminated tap water in West Virginia had a very sharp, intense licorice odor. You could tell if you were being exposed. [In Toledo, microcystin and its degradation products, to my knowledge, do not have odor.] EPA, CDC, West Virginia, and the water utility in West Virginia all endorsed the flushing protocol that exposed West Virginians (and my team) to chemical vapors. No agency objected to the protocol which ultimately harmed some people. It is not logical to think that Ohio will be different if the same organizations are involved. Even more, information about who’s actually providing technical assistance to the responders is not even available. It could be some of the exact same people. You should ask the officials to know who is involved in this response and what their justifications are for the decisions they make.
NSF_LogoDuring the West Virginia incident, the US National Science Foundation provided my team RAPID funding to provide guidance on how to flush chemically contaminated plumbing systems. We conducted RAPID experiments to obtain data, tested tap water in homes, and made some very important discoveries. Some of those are listed above and others below.
  1. External parties should provide feedback on the protocol (not just people in the Emergency Operations Center or affiliated government agencies).
  2. All buried water assets should be purged of contaminated water….but assume some were not fully decon’d because of the complexity of the buried water distribution system.
  3. A protocol should be developed and pilot tested at a few homes (not government buildings). This would help officials headoff any unexpected issues (see West Virginia).
  4. Water testing before during and after flushing several homes should be conducted to determine its effectiveness. This will take 2-4 days. If this is not done, Toledo residents run the risk of being another example of what happens when responders ask you to see if the protocol works before they test it. Do not be their experiment.
  5. There are more recommendations…You can download an excerpt from our 2014 AWWA West Virginia presentation where we discussed some of our flushing findings here: Whelton WV pres for OH.
Drinking water contamination incidents are specialized crises. They require individuals with specialized skills not simply organizational affiliations. It is critically important your officials engage experts who know what to think about…and what not to do. There is a step-wise process for responding/ investigating, and recovering from an incident like you are experiencing. The playbook should not be written on the fly. 
I have offered my assistance to the Ohio Governor’s Office, State Agencies, Mayor’s office, Health Department, and water utility because I truly want to make certain you, your family, and friend’s health is protected. There is no reason why you cannot benefit from the lessons we learned in West Virginia.  
Sincerely,
Andrew J. Whelton, Ph.D.

–DO NOT FOLLOW THE WEST VIRGINIA DIRECTIONS–

West Virginia flushing directions [—NOT RECOMMENDED FOR TOLEDO—] here: WV – How to flush
Grad student LaKia McMillan samples water inside a West Virginia home in January 2014 as part of our NSF funded plumbing system decontamination project.

Grad student LaKia McMillan samples water inside a West Virginia home in January 2014 as part of our NSF funded plumbing system decontamination project.

Posted in Uncategorized | Tagged , , , | Comments Off

New CRUDE MCHM Toxicity Results Presented at NACCHO 2014, Atlanta, Georgia

NACCHO ConfOn July 10, 2014 Dr. Andrew Whelton will release new CRUDE MCHM toxicity data during the closing plenary session of the National Association of City and County Health Officials Conference (NACCHO). The NACCHO event is being held in Atlanta, Georgia and is providing  local health officials and their public health partners from around the country information needed to improve public health for the people they serve. The closing plenary session focuses on what city and county health officials can do prepare to respond to large-scale drinking water contamination incidents. The other closing speakers include Dr. Rahul Gupta of the Kanawha-Charleston Health Department, Major General James Hoyer of the West Virginia National Guard, and Dr. David Latif of the University of Charleston.
Whelton’s presentation centers around the role of science during the West Virginia Water Crisis and, how by the application of sound science and engineering principles, professionals can help communities respond to and recover from disasters. Much of his presentation highlights the work carried-out by his students, faculty colleagues, and the international WVTAP team of experts.
The July 10 National Association of City and County Health Officials Conference presentation PDF file can be downloaded here: Whelton NACCHO Presentation File.
The new data to be released by Whelton’s National Science Foundation research group reveals several key findings. Graduate student Caroline Novy was instrumental in the conduct of this work.
  • CRUDE MCHM was much more toxic to the freshwater indicator organism Daphnia magna than what Eastman Chemical Company found in their 1998 study. 
  • Whelton’s team determined, by applying a 48 hour exposure test, an effective concentration (EC50) of CRUDE MCHM of about 50 mg/L and a No Observed Effect Level (NOEC) of 6.25 mg/L. In contrast, Eastman Chemical Company’s 1998 report cited an EC50 of 98.1 mg/L and NOEC of 50 mg/L. The lower the EC50 and NOEC, the less amount of CRUDE MCHM is needed to cause toxicity.
  • Further complicating toxicity data reported by Eastman Chemical Company is that on their own CRUDE MSDS sheets from 2005 and 2011 the NOEC value reported was actually 40 mg/L, not 50 mg/L as they reported in the 1998 toxicity testing final report.
Dr. Whelton has mentioned that his team followed nearly identical experimental conditions to those applied by Eastman Chemical Company in 1998 (i.e., water chemistry, same concentrations, photo period, duplicates). However, Whelton’s group did deviate by replicating their testing three different times as they wanted to be certain of the result. Eastman Chemical Company only reported conducting toxicity testing once with this organism.
NSF_LogoFunding for the results presented by Whelton was provided by the US National Science Foundation Engineering RAPID Program award #1424627. 
Andrew’s research team is scheduled to deliver presentations at several upcoming events to include the AWWA Water Quality and Technology, Society of Environmental Journalists, and Society for Risk Analysis Conferences and Washington State Community College. These presentations may include additional findings from their ongoing research. [Every presentation his teams have delivered since the incident occurred has contained new data]
Dr. Whelton’s team can also be followed on Twitter at @TheWheltonGroup and on their blog. With a background in water system threat identification, contamination/decontamination procedures, preparedness exercises and chemical-material interaction research, his multidisciplinary team and collaborators are available to assist States, Health Departments, and Water Utilities better plan for, respond, and recover from drinking water disasters. Questions about the NACCHO file or related materials should be directed to Dr. Whelton.
IMPORTANT NOTE: The CRUDE MCHM aquatic toxicity information described in the presentation is not part of the WVTAP project funded by the West Virginia Bureau of Health. For information about the WVTAP project please visit the WVTAP website here.
Posted in Research, Team | Tagged , , | Comments Off